Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Contributions of quadrupolar transitions to the magnetic spectroscopies of rare earth compounds

Claudia Dallera¹, Michael Krisch², Andrej Rogalev², José Goulon², Francesco Sette²

- ¹ INFM Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- ² ESRF, BP 220, F-38043 Grenoble Cedex 09, France

The interaction of 4f electrons with the delocalized conduction band is responsible for almost all the magnetic effects in rare earth compounds. Experiments of X-Ray Magnetic Circular Dichroism (XMCD) at the $L_{2,3}$ edges of rare earths provide information about 5d states but are complicated by quadrupolar transitions to the strongly localized 4f shell. It has been shown that Resonant Inelastic X-Ray Scattering (RIXS) clearly identifies these transitions*. We present RIXS results on the isoelectronic $^8S_{7/2}$ compounds EuS, GdS and Li_2TbF_6 , measured with resonant excitation across the $2p_{3/2}$ level of the rare earth component. States of 4f and 5d orbital nature overlap in the case of Eu^{2+} but are clearly separated in Gd^{3+} and Li^{4+} (quadrupolar transitions have been seen in RIXS spectra of Eu^{3+} in $\text{Eu}_3\text{Fe}_5O_{12}$ thanks to larger 4f-5d distance). We also show that $L_{2,3}$ XMCD of EuS and Li_2TbF_6 is controlled by 4f - 2p exchange interaction and is affected by quadrupolar excitations. Finally, XMCD at S K edge of EuS indicates strong hybridization of S 3p states with Eu 5d and 4f states, suggesting that indirect exchange via 5d states drives EuS ferromagnetism.

^{*}C. Dallera, M.H. Krisch, A. Rogalev, C. Gauthier, J. Goulon, F. Sette, and A. Sole, Physical Review B 62, 7093 (2000)